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Calcium Carbonate Effects on Soil Textural Class
in Semiarid Wildland Soils
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Soils from the upper Rio Puerco watershed and El Malpais wilderness study area in
New Mexico were analyzed for particle-size distribution and classified into I of 12
textural classes before and after calcium carbonate (CaCOj;) removal. The samples
selected for analysis had a CaCO; content of 25% by volume that represented 32% of
the total study samples. All of the samples having CaCO; changed particle-size dis-
tribution, and 60% of those samples changed textural class following the pretreatment
Jor CaCO; removal. The greatest changes in particle size were from sand- to clay-size
fractions. Therefore, we recommend that all wildland soil samples from the semiarid
Southwest be pretreated for CaCO; removal prior to particle-size analysis and sub-
sequent textural classification.

Keywords particle size, soil analysis, textural classification, semiarid soils, Rio
Puerco, El Malpais, New Mexico

Soil textural classification is an important element needed to convey the physical prop-
erties of a soil in relation to chemical reaction, plant community structure, ecological
potential, and resource management. Also, soil water infiltration, retention, and movement
through the profile are highly affected by soil texture. Three particle-size fractions used
to determine textural class are sand, silt, and clay. These 3 particle-size fractions are used
to arrive at 14 specific soil textural classes determined by the relative proportions (per-
cent) of each fraction in a soil sample (Soil Survey Staff, 1975).

Inorganic carbonate may accumulate in soils through pedogenic processes or may be
inherited from calcareous parent materials. Due to hot, dry conditions during most of the
year, desert soils are generally low in organic matter and highly mineralized. These
conditions may result in saline or alkaline soils and the formation of secondary calcium
carbonate (CaCO,) (McGinnies, 1981). Subsequently, due to wind transport of particulate
matter from source areas, secondary CaCOj; generally accumulates within the profile of
many soils in these regions (Fairbridge & Finkl, 1979). The zone of carbonate accumu-
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lation occurs at variable depths, reflecting the average, long-term maximum depth of
penetration of soil water moisture. Carbonate is commonly precipitated as silt crystals
(2-50 pum) in the soil but also occurs in indurated forms as nodules and/or as hard
calcareous (travertinous) layers called caliche or calcrete (Fairbridge & Finkl, 1979).

Calcium carbonate bonds to clay and/or silt particles, which affects particle-size
analysis (PSA). Highly aggregated, stable clay soils may behave like coarse sands in terms
of water infiltration; hence, they may be mistakenly identified in the field as sands or
coarse loams. In reality, these same soils, having significant microporosity and high
exchange capacities, retain water and nutrients much better than sands (Gee & Bauder,
1986).

An important step in PSA, based upon Stoke’s law, is the treatment of samples to
enhance separation or dispersion of aggregates (Gee & Bauder, 1986). Soils may contain
aggregates, such as secondary CaCOs;, that are not readily dispersed and bind particles
together. Therefore, chemical pretreatment should be used to remove carbonate coatings
and secondary CaCO; aggregates for accurate particle-size distribution (PSDs) and sub-
sequent textural classification.

The objective of our study was to determine the quantitative effects of CaCOj; on soil
PSA and how this relates to soil textural classification of semiarid soils found in north-
and west-central New Mexico.

Study Areas and Methods

Our study was conducted on the upper Rio Puerco watershed and the El Malpais wilder-
ness study area in New Mexico (Figure 1). The Rio Puerco watershed is 100 km northwest
of Albuguerque and ranges in elevation from 1,662 m to 2,743 m. The climate is semiarid,
and the mean annual precipitation ranges from 215 to 323 mm, depending upon elevation
(Francis, 1986). The Rio Puerco is mostly intermittent or ephemeral and contributes about
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45% of the entire sediment load to the Rio Grande (Dortignac, 1963). El Malpais (lava
flow badlands) is in west-central New Mexico 160 km west of Albuquerque. Its mean
elevation is 2,250 m, and annual precipitation ranges from 227 to 357 mm, depending on
elevation. Most of the Rio Puerco and El Malpais soils are Aridisols, Entisols, and Alfisols
with a few Inceptisols, Vertisols, and Mollisols; part of the El Malpais is exposed lava
flows (basalt) (Francis, 1986; Francis & Williams, 1989; Okoye, 1993).

The upper Rio Puerco watershed has been classified into phytoedaphic communities
on the basis of current vegetation and soil mapping units (Francis, 1986). Plant commu-
nities on the El Malpais have been classified on the basis of existing vegetation (Francis
& Williams, 1989).

To establish soil-vegetation relationships on a site-specific basis, soil pits were ex-
cavated and described according to established guidelines (Soil Survey Staff, 1981) along
permanent study transect locations within each study area; total transects numbered 256.
Representative soil samples were collected from genetic horizons described for each soil
profile characterized for a total of 1,436 samples from both study areas.

The soil samples were analyzed for several physical and chemical properties, includ-
ing percentage CaCOj; content and PSD. PSA was carried out with and without CaCO,
removal to determine the effects on resulting PSD and subsequent textural classification
of the samples. The CaCO; was removed with 1 M NaOAc, and the final PSA was
determined using the pipette method (Gee & Bauder, 1986); initial PSA (before CaCO,
removal) used the standard hydrometer method (Day, 1965).

The CaCOj; equivalent of the soils was determined by the acid neutralization method
{Richards, 1969). Selection of samples for pretreatment (removal of CaCQ;) prior to PSA
was set at the 25% CaCOj; equivalent based on the taxonomic definition of a calcic
horizon (Soil Survey Staff, 1975). Paired t-tests were used to determine the statistical
significance of pretreatment and posttreatment differences, and Kappa (K) analysis
(Agresti, 1990) was used to determine the disagreement of pretreatment and posttreatment
categories for PSD and texture. The standard procedure for PSA is pretreatment of all
samples for calcium removal. However, results of a survey we conducted revealed that
this procedure is not routinely carried out by analytical soil testing laboratories at land-
grant universities (Table 1). The procedure is done only by request because the majority
of the analyses deal with agricultural soils that are low (<5%) in CaCO,.

Results and Discussion

Of the 1,436 soil horizon samples taken, 32% (n = 459) had a CaCO; equivalent of 25%.
Following an initial hydrometer PSA analysis without CaCO; removal, the samples were
pretreated (CaCO; removal) and reanalyzed for PSD by the pipette method. The PSD of
all 459 treated samples changed, and 60% of these (n = 277) changed textural class.

Sand was the dominant particle-size fraction of all samples prior to CaCO, removal
(Figure 2). The greatest changes upon CaCO; removal were in the sand and clay fractions.
Clay content increased significantly (p = 0.05) in 56% of the treated samples, the sand
fraction decreased significantly (p = 0.05), and the silt fraction decreased minimally.

The most prevalent textural class prior to CaCO; removal was sandy loam (51%}). As
a result of CaCO; removal and PSD changes, 60% of the treated samples (n = 277)
changed textural class from sandy loam (52% decrease) and loam (30% decrease) to sandy
clay loam (27% increase), clay loam (30% increase), and clay (17% increase) (Figure 3).
As a result of textural class changes, 75% (K = 0.25) of the treated samples disagreed with
their pretreatment textural class (Table 2).
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Table 1
Survey of 11 soil testing laboratories at western land-grant universities (Fall, 1993)
Routine Cost per
CaCoO, sample
Laboratory Pretreatment done Instrument ($U.S)
Univ. of California No, must request hydrometer 9.00
Colorado State No, must request hydrometer 7.50
Univ. of Arizona No, must request hydrometer 8.50
New Mexico State No, must request hydrometer 10.00
Oklahoma State No, must request hydrometer 7.00
Kansas State No, must request hydrometer 5.00
Univ. of Nebraska No, must request hydrometer 11.00
Texas A&M No, must request hydrometer 10.00
Utah State No, must request hydrometer 12.00
Washington State No, must request hydrometer closed 1980
Univ. of Idaho No, must request hydrometer 9.00

An example of the effects of CaCO; on soil textural classification within one pedon
(sample site) is shown in Figure 4. This soil was initially classified in the field as a fine
Ustollic Camborthid and reclassified as a coarse loamy Ustollic Haplargid using field
characterization data and laboratory data including the PSA without pretreatment for
CaCOj; removal. Field tests for CaCO; content (effervescence reaction to 1 M HCI)
showed the A and Bkyl horizons strongly effervescent, while the 2Bky2 and 2Bky3
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Figure 2. Dominant particle-size fractions of all treated and untreated soil samples with =5%
CaCO; (n = 459). The number of sand-dominated samples decreased and the number of clay-
dominated samples increased with CaCO; removal.
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Table 2
Number of textural classes in agreement between pretreatment and posttreatment
Post-

treatment Pretreatment (with CaCO,)
(without
CaCO;) S SC SCL SL  Si SiL SiC SiCL L LS CL C
S 1(0.002)
SC 1
SCL 24 (0 05) 64 7* 1* 4%
SL 3 89 (0 19) 6* 3* 1*
S 1*
SiL 2 1* 1%
SiC 4 2 2 1*
SiICL 6 8 1*
L 22 2 50 0.11) 1 1*
LS I 2(0.004)
CL 5 26 2 50 9(002) 1
C 3 25 12 1 6 7(0.02)

Numbers 1n parentheses are the proportion of the total samples (n = 459) in this category; pooled
Kappa = 0.25, or 25% agreement/75% disagreement. Diagonal represents unchanged classes S,
sand: C, clay; L, loam; Si, silt.

*Classes are meaningless probably due to procedural error.

horizons were violently effervescent. The mean CaCOj; content for the entire profile was
30%. The carbonates were disseminated in the A horizon, and present as common fine
seams in the Bkyl and as many fine seams in the 2Bky2 and 2Bky3. Throughout the soil
profile, the most marked particle-size fraction change following CaCO; removal was a
mean 37% increase in clay and a 38% decrease in sand fractions. The horizon textures (A,
Bkyl, 2Bky2, 2Bky3) changed from sandy loam to silty clay loam or clay, demonstrating
the strong influence of CaCO; on PSA. The family particle-size classification for the soil
changed from coarse loamy to clayey as the percentage of weighted average clay in-
creased from 7% to 48% in the control section (25- to 100-cm depth) with CaCO,
removal,

Another striking example of the effects of CaCOj; on soil texture determination within
a soil profile is shown in Figure 5. This soil was classified as a clayey, fine Aridic
Haplustalf and reclassified as a clayey, fine Torrertic Argiustoll using the field and lab
characterization data. The soil had the most prevalent PSA change in the silt fraction
following CaCOj; removal. Silt content increased in all five horizons upon CaCO, re-
moval, with a corresponding change in textural class in three of these. The silt fraction of
the A, BA, and Bky horizons increased by 24%, 48%, and 47%, respectively. The Bt and
Btky horizons increased in silt content by 9% and 6%, respectively. Sand decreased in all
horizons, while clay increased in the Bt horizons and decreased in the others. The A, BA,
and BKy horizons changed textural class from clay loam or clay to silty loam or silt. The
mean CaCQO; content of the pedon was 7%, with an overall slight increase with depth from
6.9% to 8.0%. In this case, the family particle-size class did not change after CaCO,
removal because the clay fraction in the soil’s control section (upper 50 cm of the argillic
horizon; Bt and Btky) only increased an average of 4% upon removal of CaCO;. However,
the increase in the silt fraction and the corresponding decrease of sand and clay in the A,
BA, and Bky horizons demonstrate that CaCO5 has a strong influence on the overall PSD
of a soil profile, but might not result in a change in family particle-size classification. Yet
these differences in PSD and subsequent classification of soil texture would play an
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Figure 3. Soil textural class of those soil samples with 25% CaCO; (n = 277) that changed
classification.

important role in the interpretation of many important field attributes, such as plant water
availability, soil water infiltration, surface runoff, and erosion potential.

For all soil profile samples analyzed, the mean CaCOj, content for those samples with
25% CaCO5 (n = 459) was 12.6%. However, the mean was significantly ( p = 0.05) greater
for the Rio Puerco sites (12.7%) than for the El Malpais sites (1.6%)—a reflection of the
CaCO;, content in the original soil parent material, which was calcareous sedimentary rock
in the Rio Puerco study area and weathered basalt in El Malpais. The sample with the
greatest CaCOj; content from the El Malpais study area contained 35.0% CaCO,, com-
pared with 49.4% CaCO, for the sample from the Rio Puerco area. The El Malpais sample
textural classification changed from loam to clay, while the Rio Puerco sample remained
a sandy loam following CaCO, removal.

The greatest mean CaCO; content by genetic horizon was 12.3% for the 2Bkyl
horizons sampled from the Rio Puerco study area (Table 3). These horizons had a mean
thickness of 35.8 cm. The Bk horizons had a mean CaCO, content of 9.8% and a mean
thickness of 40 cm, with horizon thickness depending on landscape position, which ranged
from valley bottom to mesa top; the majority occurred on ridge slopes. Most of the Bk
horizons changed textural class following CaCOj; removal.

Once again, comparing the treated samples from Rio Puerco (n = 455) with those of
the El Malpais (n = 4), the mean CaCO, content was 12.7% and 1.6%, respectively. For
those samples that also changed textural class (n = 277), the mean CaCO, for Rio Puerco
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Figure 4. Example of particle-size distribution, textural class change, and CaCO, content by
horizon of a soil profile from untreated and treated samples. The most dramatic change in this pedon
was the increase in clay following CaCO; removal. Numbers to the right of each horizon pair
represent the percentage change (£) in each sample after CaCO; removal. This soil from the Rio
Puerco study area was classified as coarse loamy prior to CaCO; removal and clayey, fine after
CaCO, removal.

textural classes. The PSD change most often affected was a decrease in sand with a
corresponding increase in silt and clay (Figure 2). These changes resulted in a greater
number of “‘fine’” textural classes (Figure 3). :

We encountered a circumstance where standard methods of classification did not
reflect what was occurring in the field. The recognition and expression of CaCO; in
Keys to Soil Taxonomy (Soil Management Support Services, 1985) for the suborders
Argid and Ustalf and the great group Camborthid were ineffective in our study area
(Okoye, 1993). The soil at one of our sample sites with a CaCOj; content of 230% in the
2Btky2 and 2Btky3 horizons (35- to 94-cm depth) was classified as a Haplargid. The
abundance of CaCO; was not expressed in the taxonomic classification of the soil even
at the family level because of the presence of an argillic horizon (Table 4, sample site
1{19). In contrast, another soil (E62) had only about half as much carbonate and was
classified as a Calciorthid due to the absence of an argillic horizon. Small amounts of
CaCO; have an important effect on the physical and chemical properties of soils and,
subsequently, their management (Hallmark, 1985). Richardson and Lewis (1985) sug-
gested that carbonate abundance should be expressed before or at the family level to
provide information for agricultural, engineering, and/or other applied purposes, including
communicating research results among soil scientists and other natural resource scientists
and managers.
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Figure 5. Example of particle-size distribution, textural class change, and CaCO; content by
horizon of untreated and treated samples from a soil pedon. In this example, the silt fraction changed
the most after CaCO,; was removed. Numbers to the right of each horizon pair represent the
percentage change (%) in particle-size distribution after CaCO; removal. This soil from the Rio
Puerco study area was classified as a clayey, fine Aridic Haplustalf prior to CaCO; removal and a
clayey, fine Torrertic Argiustoll after CaCQO; removal.

Conclusions

Whether or not to remove secondary CaCO; from samples prior to PSA raises a ‘‘rhe-
torical red flag’™ because so many Southwestern soils occur naturally with CaCO; and
most soil-plant relationship studies deal with soil in situ. Soil texture is necessary for
comprehensively describing soil physical attributes. Are we thus interpreting an ‘‘unre-
alistic’" field condition by removing CaCO; prior to PSA of soils from semiarid Southwest
wildlands? CaCOj; affects soil physical properties by the formation of secondary sand- and
silt-sized granules that mimic primary particles, which not only affects PSD, but also
affects soil structure and pedogenic development by controlling infiltration and aeration
rates. All of these factors directly or indirectly affect ecological interpretation, classifi-
cation, and management decisions. Therefore, the decision to remove CaCO; before PSA
should be determined by the study objective(s). If a study on soils in semiarid wildlands
requires PSA, then (1) determine CaCOj5 content for all samples in the profile, (2) deter-
mine if CaCO; removal affects PSA, and (3) evaluate to what degree the resulting PSD
and soil textural classification affect subsequent standarized soil classification and inter-
pretations on site capability and management prescriptions.

We recommend that all arid wildland soil samples analyzed for PSD be pretreated for
CaCO; removal prior to PSA because the resulting PSD and subsequent textural classi-
fication are strongly dependent upon this analysis. As our survey of soil testing labora-
tories in western land-grant universities revealed, this procedure is not routinely carried
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1 study on soils in semiarid wildlands *Horizons may include one or all of the following subdivisions and/or layers: 1, 2, 3, 4, 5, b, t,
for all samples in the profile, (2) deter- k, y. For example, Bk1 includes Bk1, 2, 3, 4, t.
luate to what degree the resulting PSD
t indarized soil classification and inter-
scriptions. out for standard PSA testing. Therefore, researchers and natural resource managers re-
iples analyzed for PSD be pretreated for questing soil textural analyses should specify CaCO; removal prior to PSA. If CaCO; is
1 PSD and subsequent textural classi- not removed, soil classification may be compromised. This procedure is extremely per-
As our survey of soil testing labora- tinent because management decisions for Southwestern wildlands are increasingly being
this procedure is not routinely carried based on standardized classifications of soil/plant communities.
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Table 4
Carbonate expression in soil taxonomy
Sample
site Depth CaCO;,
number  Horizon (cm) (%) Classification
E62 A 0-5 18 Coarse-loamy, mixed, mestc, Ustochreptic
Calciorthid
Bt 5-28 135
2Btk 28-68 150
2C 68-96 140
2Cr 96--120 172
1119% A 0-5 307 Coarse-loamy, mixed, mesic, Ustollic
Haplargid
Btkyl 5-35 290
2Btky2 35-68 300
2Btky3 68-94 317
1122% A 0-5 <1 Fine-loamy, mixed, mesic, Ustollic
Haplargid
Bt 5-17 61
2Btkyl 17-34 56
Btky2 34-73 58
Bky! 73-107 98

Bky2  105-150+ 82

Table modified from Okoye (1993) Horizons are defined 1n Table 3
*Sites are 1n the same so1l mapping umt, but different plant communities (Francis, 1986)
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